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COMPARISON OF SIDEBAND SPECTRA OBTAINED FROM ANALYTICAL
FORMULA AND FROM NUMERICAL SIMULATION IN FREE-ELECTRON LASER*

Harunori Takeda
Los Alamos National Laboratory
MS ES531, Los Alamos, NM 87545

Abstract

The sideband spectrum appeasing in the free-electron laser is antlyzed. For an untapered undulator, we predict the
wavelengihs of local peaks arising from the sidebands; they are compared with numerical simulations. In our analytical
theory. three laser-driving terms are derived: One term does not chirp in frequency, drives a number of frequencies
simultaneously, and is always the strongest term with a fixed strength. The other two driving terms, which also drive
multiple frequencies, chirp to both directions from a resonant frequency. 'We assume that the sidebands originate from a
dipole oscillation of average electron energy. This oscillation frequency is equal to the synchrotron or-illation frequency.
The theory predicts that the strength of the chirping terms is proportional to the amplitude of the dipole moment.

Introduction

Sidebands reduce the extraction efficiency and the gain of a free-eleciron laser (FEL) with a tapered undulator. On the
other hand, the sidebands occurring in an untapered FEL undulator increase the extraction efficiency and the gain, In an
oscillator experiment, the laser light is amplified between two mirrors. In this paper we discuss the spectral characteristics
of sidebands occurring in the untapered undulator and the local peaks of the laser spectyum when new sidebands are
excited and their intensities are increased as the pass number of the luser radiation in the cavity increases.

To explain the spectral characteristics of the sideband, we extend the multifrequency formulation of the free-electron
laser! by including a simple oscillator that represents the sideband. The frequency of the oscillator is assumed equal to
the synchrotron oscillstion frequency of the electrons in the ponderomotive potential well. Using this theory, we derive a
relation between the frequency separation of each sideband and the bandwidth of the fundamental. We also derive that
the synchrotron motion induces frequency chirpings of the laser from the resonant frequency. Two sideband driving terms
arise from a single resonant frequency that splits in opposite directions.

We relate the synchrotron period and the undulator length as a function of frequency chirp. The numerical simulation
shows tie same frequency chirp of the peak intensity as the analytically obtained frequency chirp.

To confirm the picture of sidebands obtained from the analytical study, we simulated an FEL oscillator experiment
vsing, u one-dimensional FEL code, FELP,** sssuming that no laser intensity is lost in the optical cavity. An untapered
undulator is placed at the renter of the cavity. The laser in the multipass numerical simulation starts with noise charac-
terised by wide bandwidth, random phase, and random amplituds. The starting intensity is set such that it induces the
syuchrotron oscillation with s period greater than the undulator Jength. Laser specira are caleulated by taking snapshots
at several past yvumbers. Then, the local peaks of the spectra are compared to the predicted peaks from the analytical
expression.

Elsctrons Driven hy a Myltifrequancy Laser
Using the one-dimensional approximation, we include both 1 he fundamental and the sidebands in the electron equation

of motion by expressing the optical field as supernosed waves. Liefining the vector potentials of the optical fleld and helical
undulator as

A= Y Au()[feon(8us - weat + 61a) — Tain(0rs - wiat + 610)) )
'

and

Ay m ~Ay(2)[Fconly + Tainby) (2)
where "

o= '/, buds t)

and
LTS R TR (4)
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The phase angle of an electron for a wave number & can be defined as

2
L 78 =k1_z+/ kod: —writ + éLk . (5)
0
Following the standard derivation using Hamilton's equation, one can obtain the energy equation
d—v--g'!(—:-)zwuau(:)lin%(:-f) . (6)
dt v 4

where ay, and a;i are dimensionless vector potentials of the undulator and the laser, respectively, with wave number k.
The laser frequency is defined as wyy = cky. The time derivative of the electron phase angle is

dv ' 1+ a? dox -
Tt ‘”’(“"(Hn.)ﬁ.-ﬂ“) @ ()

where & is defined as a sum of dimensionless vector potentials of the laser and the undulator (= =i~ (Ay + A1)
In the presence of a frequency #jiread, the buckets from each wave number k are superposed, causing the electrons to
be detrapped from the bucket of the resonant frequency.

Madal of Sidsband

It is generally accepted that the sideband is driven by a periodic motion of electrons in the bucket, The sideband
appears in the laser spectrum as an added frequency in addition to the fundamental frequency. To have gain at the sideband
frequency. the laser must be driven by the transverse motion of electrons at that frequency. Therefore, the transverse
motion of the electrons must possess sideband frequencies. The transverse velocity and the total elcciron energy are related
by AL = Ll.l (where a is the transverse dimensionless vector potential of the field); we note tha( the driving of the sideband
is not dnmtly related to the Jongitudinal position of the electrons in the bucket. When the electrons ure localized and
oscillate in the longitudinal phase space, the transverse motion resulting from the oscillation drives the laser field at the
corresponding sideband frequencies.

When an electron beam with a small energy spread enters an undulator, the electrons se: a number of buckets:
each bucket corresponds to a bucket of a particular laser frequency and phase. However, the energy transfer from the
electrons to the laser is maximum where the pesk gain is equal to the electron-b2am energy. Also, a laser field with shorter
wavelength having a negative gain at the electron-beam energy (as created by spontaneous emission or noise) gives energy
to the electron beam. Then the energy is transferred from a short wavelength to a long fu. lamental wavelength.

Because the energy at which peak gain occurs for the fundamental is higher than the beum energy, the average energy
of the electrons is higher than the resonant energy of that bucket. The average energy of the electrons oscillates around
the resonant particle of the bucket. This oscillation frequency is approximately the synchr-tron frequency with respect
to that bucket. As the smplitude of the fundamental increases and sidebands are generated at longer waveleagths, lower
resonant energies of corresponding buckets from sidebands reduce the oscillation center of the average dlectron energy,
and a further detrapping from the bucket of the fundamental occuss. This action causes a net positive gain and increased
efRciency for an untapered undulator.

The energy of the jth electron as a function of time can be approximated as

vy =y + 7 COB(wy! + &) . (8)

where w, is the average energy oscillstion frequency that is approximately the synchrotron frequency, 4y is the average
energy of the oscillation center, and ) is the average energy oscillation amplitude. The phase angle o, of the cvirage
energy osciliation st the undulator entrance is left unknown: assuming ¢, ~ 0 appears reasonable, but it violates the
observed tendency that the intensity-weighted wavelength of the spectrum chirps longer becaure of the sideband.

Let us assume that two sidebands are present at frequencies equally displaced about the resonant frequency. When
electrons enter the undulator with uniformn phase-angle distribution. the sum of the driving terms over the electrons is
tero. However after a short distance in the undulator. the energy of the electrons is increased by absorption from the
sidebands. Each nideband has the following wave number: cne wave number with kp + 6k above the resonance kg and the
other with kny ~ ok, Assuming that the shift of the laser fleld phase At wave number Aa is smiall, <he electron phace angle
Wi+ reduces. The other phase angle ¥, -1 increnses by the same amount. For an untapered undulator, Eq. (6) gives
a net positive energy to electrons from the sidebands. This result implies that the phase angle ¢, is approximately ** for
the untapered undulator.

Restating the assumption of Eq. (8): Each electron energy is replaced by un average energy that oscillates around a
sideband-modified resonant energy 7. Although the sideband-modified resonant energy is not well defired, it is determined
from the emerging buckets resulting from the presence of sidebands. The phase dintribution of the elecirons contributes
gein to both fundamental and sidebands, but it does not directly drive the sidebands.



Substituting Eq. (8) into 3, = L?,-l . and assuming that the ratio of bucket height to the resonant energy is small, one
obtains the following transverse electron velocity modulated by the syunchrotron oscillation:

cos(ky Bict + &)
F+ A cos(wot + P )]

[1 - ; cos{w,t + ¢, )] cos( ky A ct + o)

A; = a,

'70
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where the electron transverse frequency is w = cky3,. and C.C. means complex conjugate. Equation (9) states that
the electron transverse motion, in fact, has +./, modulated frequency components. The radiation field is driven by the
transverse electron current, and two sidebands are driven by the transverse motion. The strength of each component is
measured by the relative energy A sideband component is weaker than the fundamental by a factor 31‘- which is. at
most, a gain bandwidth of the un&ulatot

Single Fraguency Component of Spextral Equation for an Untapered Undulator
A single frequency component of the field is obtained by integrating both sides of the spectrally decomposed laser
equation (derived in Ref. 1), with respect to r after multiplying by e**" on both sides of the equation. The t1th component
in the lefi-hand side (LHS) of the spectrally decomposed laser equation is

K Z 2040 ,“-o‘m. (/' etlwimws )t gy ) ( ~ 886*:! )

2010 Ofia , 8% . ) _ (10)
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We include the sideband in the laser equation as follows: using the following relations that relate the variables r and =
to the variables t and =, 4
1€

:-=‘+——r

1 -
and
3 1

f= + =7 T.
we substitute the second equation above into Eq. (8). and using 2;, = ]-15— the spectrally decomposed field equation
can be approximated to first order in 3‘:- The ith laser wave-number component in the right-hand side (RHS) of the
wpectrally decomposed laser equation is then given by (see Ref. 1 for definition of terins)
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multiplied by a constant i\’ ‘,l-,,{-, ('The abbrevistion H.C stands for Hermitian conjugate.) In the RHS of the apectral

field equation, the taper-dependent term ¢ ='* 1'-'*7 can be extracted from the integral .



After performing the 7 integration from 0 to a laser pulse alippage time 7, across the nndnlator, we obtain the ith
compotient of the loser equation:
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The first and second terms an the RHS are present even withoit synchrotron oscillation. The third and fourth terms.

which have a multiplier of synchrotron oscillation. represent the effect resulting from the synchrotron oscillation,

We multiply by ¢™'® and separate real and imaginary parts. The real part gives an equation for phase:
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imuginary part gives an amplitude equation:
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In both the amplitude and the phase equations, there are two types of frequency-dependent terms. They are

__‘i:f'”‘ sin(.X,, + 4,). and  cos(Xi, + i),

where X,, and §,, are given by
T §
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and 7
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where v= 0, 4+1. and -1 . (16)
The ), and w,' are given as
, ‘ qclndu.. =#— . (17)

Using X, and §,,. Eqs. (14) and (15) simplify to
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The recond expression of Eq. (17) relates (he periodic oscilletion frequency w,. such as the synchrotron frequency. o
the corresponding laser frequency shift «,'. We note that when the laser frequency ', is ~qual to the “p. then "F“ takes
its maximum value in the absence of the sideband -nd thus. corresponds to the “resonance condition.” To show this. we

solve w, m w, by utilizing the relation iy = i4Fayl-. We obtain
A, A1+ A4, 2.1
. A BURRy N LI Tl & 2Ly NI I, 2
l!'-k"l—i‘l.l- ‘ 14+ad -l'l-ru’ (20)



When a dominant bucket is formed at high laser intensity, we may assume that the laser phase angle changes slowly.
One of the effects of the sideband is that it artificially shifts the bucket with respect to phase. according to the amount of
the sideband frequency shift. The spectral function in the driving term is modified by the sideband with vu:

sin & [w, — (wp ~ vwy)]

(21)
".}L [wh = (wp — vy
The shift of the spectral function caused by the sideband is
LA 1L W'y L, Ly
S =214 =7 I ) 22
2! ?-C}a:( ! :)1 - /'}: r/;zLaym‘ 1-.1y/nc7r (22)

This equation states .hat when the frequency chirp caused by the sideband is more than half the laser bandwidth
(synchrotron period < undulator length). the driving term passes a node and starts driving the next bandwidth. The
strength of the spectral function becomes maximum at every 7. When the sidebands are driven by this chirping mechanism.
a new sideband appears as the chirping given by Eq. (22) passcs each node.

The wavelength chirping of each sideband with respect to the fundamental can be obtained as follows: Using A\p =
(-lii‘-‘z\.,.. the second part of Eq. (17) becomes

Aw Au 2mc

S, = SN 23)
AL“" /\L Laync (

u‘: = Auwp ~

Taking the ratio to w. converting to wavelength using Eq. (22), and ncting that the driving term has nodes at every
7 in Awp, we obtain the sideband scparations as

A\ _ +-'\—"'—m where m :integei > 1 . (24)
AL L:ync

We have included the factor m to represent the mth sideband. For example, in the Los Alamos experiment with A,. =
2.7 cm and L,yn. = 1 m. the quantity ﬁ{‘ is calculated to be 0.3 ym, which is in good agreement with the numerical
simulation.

In addition to the sidebands that chirp from the resonant frequency as described above, there appears another class
of sidebands. In the following sections. we study the individual driving terms closely and identify the different classes of
sidebands.

Driving Terins Neglecting the Effect from the EJ Bunchi

Neglecting the common multiplicative factors, the driving terms of Eq. (19) from the jth particle by the undulator
field can be written as

F = sin(X,0 + ¢.)ﬂ§-§ﬂ - (2-"3—) sin (X, + &, =1 — vé,) 3";—5— . (25)
10 Y0 W

We note that k755~ + ¢, is equal to (kp + ky)z - wit + @, A negative sign in F - ¢ is included in Eq. (25). The factor
nE u-"-'g‘—;-ﬁl—'- and its ratio to electron phase are relatively small for a 3-cm period and 1-m undulator:

7%
. S e Aw ~ 3%,
ky 72 - ky owne
Separating the terms wii lin sin into one term that includes the frequency and another term that includes the phase
angle ’\‘u~,—_tT' + o, Eq. (25) is written as
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For an ideal untapered undulator, the resonant angle is zero. We make the assumption that the resonant angle
k..‘-,—_L‘;T + o, is equal to zero for all buckets, including those arising from the sidebands. This assumption is reasonable
because the undulator taper determines the resonant angle. With this assumption, a sum over particles is zero:

/Zs'm (k\..—bl—— o) s =0
> 1-4,,



The driving expression is further simplified to
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Two driving terms are characterized by the presence or absence of vw),. The first term in Eq. (27) has no dependence on
w}. For the second term. the spectrum is displaced by w, but it maintains its spectral shape. Also, the amplitude of this
term depends on the amplitude of the average energy oscillation, which is expected to be, at most, a relative half-energy
spread of the dominant bucket.

Although the initial phase &, is determined by when the electrons effectively start bunching along the undulator. we
can w.derstand the sideband chirping better by approximating ¢, = =. By doing so. the phase of excited waves from the
first “stationary term” and from the second “chirping term” are equal at the limit «| = 0. Both terms have the same
spectral shape with its origin coinciding at the limit o, = 0. The spectral shape of the stationary and chirping terms are
shown in Fig. 1. They are centered at wavelength 10.14 ym, and the chirping term shown as a dashed line is also centered
at 10.14 ym. At this limit w, = 0, nodes and peaks for both spectra coincide.

The chirping term with v = 1 chirps to a longer wavelength from the center, and it enhances the amplitudes created
by the stationary terin as its peak sweeps over the local peaks of the stationary spectrum. The chirping term with v = -1
chirps to a shorter wavelength from the center, and it cancels the amplitudes created by the stationary term because the
phase of the stationary term is opposite to the phase of the chirping term. The phase of waves at a wavelength less than
the center is driven by the stationary term = away from the phase of waves at a wavelength longer than the center.

The staticnary term drives more strongly at local peaks that locate symmetrically from the resonant wavelength than
at the chirping term. Each local peak of the stationary spectrum drives the sideband; this class of sidebands develops
independently from the synchrotron oscillation. As the total laser power increases, a number of sidebands appear, even
when the ratio of undulator length to synchrotron length is about one or two.

The chirping spectrum enhances the waves excited by the stationary spectrum and also creates its own local peaks.
The frequency of sidebands driven by the chirping terms degenerates from the main peaks of the stationary term. The
amount of chirp is determined by Eq. (22). The peak of the laser amplitude spectrum chirps to a longer wavelength
according to the peak of the chirping spectrum.

Figure 2 shows the driver F as a function of synchrotron length L,ync. As the chirping term chirps in the wavelength
according to the synchrotron length, its peak traces the spectrum of the stationary term. The effect of tue sideband
gradually increases and peaks at 2Lyy = Laync: When the intensity become:, larger, the stationary driving term reduces
and becomes zero at Lyig = Lyync. Successive peaks are at Lyig = Loync (n + 4). The displacement of wavelength caused
by chirping for a sideband from Ap, defined as %‘, is obtained by using Eq. (23):

— e e (28)
where z = Ly/L,yn. and N is the number of periods in an undulator. The fractional wavelength separation between
successive peaks is Ay./L,yne.

Because the spectrum has a shape m;’-‘, the wavelength of successive local peaks of the driver can be obtained by
solving
rz—tanr =0.
0.0

0.4

Driving Pancti

ey r y gy
0.6 68 100 102 M4 108 100 110 0.04
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Fig. 1. The apectral shapes of the stctionary term and
the chirping term are the same, and the center coincides at Fig. 2. The stationary driving term is periodic as a function

wy =0, of o



The relation between r and laser wavelength Ay is given by

A
A= R (29)
l-&-r-—L

wl.

where the A1, is the resonant wavelength.
. (I LS | Peaks } N ical Simuiati

In the previous section. we have derived several characteristics of the sideband for an untapered undulator. We now
compare the local peaks of the spectra obtained from the numerical simulation using FELP and the local peaks calculated
from the analytical expression.

Initial Conditions for Running FEL Multi Simulati ith the Code FELP

We simulate the multipass process using the code FELP with the following assumptions: (1) cavity loss is set to zero,
(2) the electric field is driven with random noise at the first pass, and (3) the assumed undulator is of the Halbach ty pe.’
We ran the code FELP under the periodic mode where the boundary conditions for both the electron beam and the laser
are assumed periodic. Initial conditions are shown in the following list:

Electron-beam peak current 150 A
Electron-beam energy (v = =£3) 41.8
Undulator field 3kG
Undulator length 200 cm
Undulator wavelength 273 em
Rayleigh range 49.5 em

The resonant wavelength Ap of the system including the Gaussian-wave effect is calculated to be 10.14 ym.

Wavelength Shift of the § for the Chirping T

The second part of Eq. (17). which gives the laser frequency shift of the driving spectra, can be rewritten in terms
with wavelength using Eq. (20) as
b Aw 2mc

w, = —
’ )\L Lcync
where A and A, are laser and undulator wavelengths. The iaser wavelength after the shift is then expressed as

Anewl = AL ( !

1—uﬁ:‘:)

(30)

1
-’\Lm , (31)

where N is the number of periods in the undulator ( -f\“‘-) and the index v can be either +1 or —1. With respect to

resonant laser wavelength A\, = 10.14 y/m. the wavelength shift éAz is approximately linear in 7_-‘-'-'- as shown in Fig. 3.
For example, the wavclength shifts by 0.3 ym at Lyyne = Luwig-

As the power present in the FEL cavity increases, the synchrotron length decreases. Assuming a no-loss cavity, Fig. 4
shows the number of synchrotron periods in an undulator length plotted as a function of power. At 1 GW power. about
two synchrotron oscillations take place in the undulator. For this no-loss system. it takes about 100 passes to rcach §
GW with the FELP code. The pass number is plotted agairst the power in Fig. 5. The intensity was assumed to be 10*
W /em? at the entrance to the undulator.

The Sidebands by the Stationary Term and ky the Chirping Term

In the following argument, we ignore the dependence on the electron distribution and the laser phase because they
are not obtainable analytically in terms of simple expressions. However, they affect the relative strength of the driving
terms; that is, they enhance the chirping sideband drivers.

In the numerical simulation. we take snapshots of the laser electric field spectrum at Pass 1, Pass 7, Pass 20. Pass
100. and Pass 200. The growth of the sidebands is associated with the synchrotron length and the wavelength chirp. The
laser spectrum at Pass 1 is shown in F:g 6. The optical power is 1.572 x 10! W, and gain is about 100. The synchrotron
length is approximately 1997 cm, and 1—'-“- is 0.1. The wavelength shift is 0.014 um. The peak of electric field amplitude
is at 10.18 y/m. the sideband with a = phue shift is seen at 10.10 ym. Although it is not clear, we also see that the
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Fig. 3. The wa\elength chirp of the chirping term is pro- Fig. 4. The inverse of the synchrotron period is shown as
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Fig. 6. The laser spectrum at Pass 1.

sideband near 10.33 y/m is rising. At this iaser power. threc driving spectra are well overlapped, rs was shown in Fig. 1.
The electron energy spectrum is symmetric with respect to the average, as showa in Fig. 7.

The laser 8ps >ctrum at Pass 7 is shown in Fig. 8. The ontical power is 6.57 x 107 W, and the gain per pass is about
30%. The ratio L—‘-“- is 0.997. It has a peak at 10.2 um. We observe local peaks at 10.34 ;sm and at 10.48 ysm. Also there
is a weak local peak at 10.05 ym. To interpret these local peaks from FELP simulation, we calculated the local peaks
of the stationrry term and the chirping terms. Figure 9 compares the positions of the local peaks: from the stationary
spectrum (Crse 1), from the spectrum chirping to longer wavelength (Case 2), from the spectrum chirping to shorter
wavelength / Case 3), and from the FELP calculation (Case 4). The resonant wavelength is labeled by Cy, the centers of
chirping sp:ctra are labeled by C. The numerical resolution is shown as horizontal arrows at points for Case 4. All the
local peak:, of FELP lie on one or another of the nredictions from the driving terms, showing that the weak local peak at
10.05 ym is driven by the term that chirps to shorter wavelength. Other local peaks from FELP coincide with the local
peaks of the driving terms. Because they are approximately at the same wavelengths, we cannot identify which term is
driving the peaks. We note that several sidebands are already observed at synchrotron length approximately equal to
the undulator length. The electron energy distribution is shown in Fig. 10. Because of gain, the energy distribution is
asynuaetric and weighted toward lower energy.
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Fig. 7. The electron energy distribution at Pass 1 is nearly Fig. 8. The laser spectrum at Pass 7 shows that sidebands

symmetric. start appearing.
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Fig. 9. The local peaks of the stationary driver and the  pjg 10, The electron energy distribution at Pass 7 shows
chirping drivers are compared with a numerical simulation  ap energy loss.
(FELP) at Pass 7.

The chirping term at Pass 20 chirped A\ = 0.239 ym and AA = ~0.228 ym. The stationary ierm and the term
chirped to longer wavclength are shown in Fig. 11; the stationary term and the term chirped to shorter wavelength are
shown in Fig. 12. The laser amplitude spectrum has a number of local peaks, as shown in Fig. 13. The optical power is
5.4 x 10° W, and the gain per pass is about $.0%. The ratio 7_—-‘“‘- is 1.69 and has a peak at 10.48 um. We observe a
number of local peaks. All the local peaks from FELP are shown in Fig. 14 as Case 4 together with the local peaks from
the stationary term and the chirping terms. Figure 14 shows that ihe stationary term explains all of the peaks, but the
term chirping to a longer wavelength predicts well near 10.2 :m. We note that the chirped center of the term to longer
wavelength is about 10.4 ;ym, and this is approximately close to the weighted center of the FELP spectrum. The elertron
energy distribution is shown in Fig. 15: the spectrum has developed a wide bandwidth.
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Fig. 11. The term chirped to a longer wavelength is shown  Fig. 12. The term chirped to a shorter wavelength is shown
with respect to the stationary term at Pass 2C. with respect to the stationary term at Pass 20.
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Fig. 13. The laser spectrum at Pass 20 shows a number of  Fig. 14. At Pass 20, the local sideband peaks from FELP
sidebands. simulation can be explained by the stationary term.



The chirping term at Pass 100 chirped AX = 0.436 ym. and AX = —0.402 ym. The stationary term and the term
chirped to a longer wavelengih are shown in Fig. 1G: the stationary term and the term chirped to a shorter wavelength
are shown in Fig. 17. The laser amplitude spectrum developed more local peaks. as shown in Fig. 18. The optical power
is 5.54 x 10° W, and the gain per pass is about 1.17%. The ratio -[L-.‘:-‘:"‘- is 3.02. Figure 18 has two dominant peaks: at
10.48 ym and at 10.93 ym. Figure 19 shows all the local peaks from FELP and the predicted positions of local peaks.
At the short wavelength near 9.6 ysm. the waves with phase shifted by 7 are driven either by the stationary term or by
the term chirped to a shorter wavelength At the local peaks with a long wavelength near 11.5 ym, the local peaks by
FELP can be explained with the term chirped to a longer wavelength. We also notice that the center of the term chirped
to a longer wavelength is at 10.58 pm, which is approximately at the weighted center of the electric-field spectrum. The
electron energy spectrum at this pass is shown in Fig. 20. The spectrum has a wide plateau in the center.
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At Pass 200. the chirping term chirped by AX = 0.540 ym and AX = —0.488 ym. The stationary term and the term
chirped to a longcr wavehngth are shown in Fig. 21: the stationary term aud the term chirped to a shorter wavelength
are shown in [ig. 22. The spectrum of laser amplitude is nrlwr in structure, as shown in Fig. 23. The optical power is
1.24x 10" W, and the gain per pass is about 0.57%. The ratic 7—‘-‘- is 3.70. The major peaks are near 10.68 ym, which is
the center of the chirping term to a Jonge. wavelength. Figure 24 "shows all the local peaks from FELP and the predicted
positions of the local peaks. At the short wavelength near 9.6 ;m, either the stationary term or the chirped term to a
longer wavelength explains the FELP data. Near the major peaks, the stationary term predicts the local peaks. At the
longer wavelength limit near 11.5 ;sm. the term chirped to a longer wavelength appears matched to the FELP data. The
electron energy spectrum at this pass (shown in Fig. 25) hus a wide plateau in the center and a peak at the low-energy

end.
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Fig. 21. Tle term chirped to a longer ‘vavelength is shown
with respect to the stationary term at Pass 200.
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Fig. 23. The laser spectrum at Pass 200.
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Fig. 22. The term chirped to a shorter wavelength is shown
with respect to the stationary term at Pass 200.
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Fig. 24. At Pass 200, the term chirped to a longer wave-
lesigth explains the long wavelength end of the FELP local
peaks. At the short wavelength end, either the stationary
or the term chirped to a shorter wavelength explains the
numerical simulation.

Conclusion

The analytical theory predicts that the driving terns
of sidebands genernted in the untapered undulator are elns
sified into two categories: (1) the stationary term that s
present even in the absence of synchrotron oscillations and
(2) the chirping terms that are driven by the synchirotron
oscillations. The relative wavelength separation of the side-
bandy is determined by the ratio of the undulator wave
length to the synchrotron length for both types of side.
bands. The frequencies of the chirping terma degenerntes
from the stationary term in opposite directions fron the
rexonant frequency as the intensity of the laser increases.
The sideband spectrum at a particular laser intensity is n
rexult of A superposition of stationary and chirping xide
band drivers.



The numerical simulation of sidebands agreed well with the analytical prediction of the local peaks of the spectrum. In
the numerical simulation, laser spectra are calculated by taking snapshots at pass numbers up to 200. For each snapshot,
we calculated the synchrotron length and the frequency shift of the driving terms. We calculated all the local peaks as
predicted by the three driving terms at each intensity. We then compared those peaks with the local peaks obtained from
the numerical simulation. For all the passes where snapshots were taken, they agreed well.
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